Lecture 12 Part 1: Lasers for Guide Stars

Claire Max Astro 289, UC Santa Cruz February 18, 2020

Outline of laser guide star topics

- ✓ Why are laser guide stars needed?
- Principles of laser scattering in the atmosphere
- What is the sodium layer? How does it behave?
- Physics of sodium atom excitation
- Lasers used in astronomical laser guide star AO
- Wavefront errors for laser guide star AO

Atomic processes for two-level atom

• Einstein, 1916: atom interacts with light in 3 ways

- Spontaneous emission

$$\left(\frac{dN_1}{dt}\right)_{spont} = A_{21}N_2$$

- Stimulated emission

$$\left(\frac{dN_1}{dt}\right)_{stim} = B_{21}N_2U(v)$$

$$\left(\frac{dN_1}{dt}\right)_{abs} = -B_{12}N_1U(v)$$

Graphics credit: Wikipedia

Page 3

 N_1, N_2 = density of atoms in states 1 and 2; U(v) = radiation density

Saturation effects in the Na layer, from Ed Kibblewhite

 Consider a two level atom which initially has a ground state n containing N_n atoms and an empty upper state m. The atom is excited by a radiation field tuned to the transition

 $v = E_m - E_n/h,$ hv >> kT

• In equilibrium $B_{nm} U(v) N_n = A_{mn}N_m + B_{mn} U(v) N_m$

 A_{mn} is Einstein's A coefficient (= 1/lifetime in upper state). $B_{nm} = B_{mn}$ = Einstein's B coefficient. U(v) is the radiation density in units of Joules/cm³ Hz

Check units:

Saturation, continued

- Solve for $N_m = N_n B_{nm} U(\nu) / [B_{nm} U(\nu) + A_{mn}]$
- If we define the fraction of atoms in level m as f and the fraction in level n as (1 - f) we can rewrite this equation as

$$f = B_{mn} U(v) (1 - f) / (B_{mn} U(v) + A_{mn})$$

$$f = 1/[2 + A_{mn}/B_{mn}U(v)]$$

- This equation shows that at low levels of radiation U(v) the fraction of atoms in the upper level is $B_{mn}U(v) / A_{mn}$
- As the radiation density increases, fraction of atoms in upper level saturates to a maximum level of 1/2 for an infinite value of U(v).
- Define a saturation level as radiation field generating 1/2 this max:

$$U_{sat}(v) = A_{mn}/2B_{mn}$$

U_{sat} is not a cliff: fraction in upper state keeps increasing for U >> U_{sat}

Page 7

Fraction in upper state vs. U/Usat

Saturation, continued

- The ratio A_{mn}/B_{mn} is known from Planck's black body formula and is equal to $8\pi hv^3/c^3$ joules cm⁻³ Hz
- The intensity of the radiation field I (ν) is related to U (ν) by

I(v) = U(v)c watts/cm² Hz

 $I_{sat} \approx 9.48 \text{ mW/cm}^2$ for linearly polarized light

- In terms of photons $N_{sat} = a \text{ few } x \ 10^{16} \text{ photons/sec.}$
- CW (continuous wave) lasers produce more return/watt than pulsed lasers because of lower peak power

Outline of laser guide star topics

- ✓ Why are laser guide stars needed?
- Principles of laser scattering in the atmosphere
- What is the sodium layer? How does it behave?
- Physics of sodium atom excitation
- Lasers used in astronomical laser guide star AO
- Wavefront errors for laser guide star AO

Types of lasers: Outline

- Principle of laser action
- Lasers used for Rayleigh guide stars
- Lasers used for sodium guide stars

Overall layout (any kind of laser)

Principles of laser action

Stimulated emission

Lasers used for Rayleigh guide stars

- Rayleigh x-section ~ $\lambda^{-4} \Rightarrow$ short wavelengths better
- Commercial lasers are available
 - Reliable, relatively inexpensive
 - Green laser (532nm) e.g. MMT
 - RoboAO uses 10W ultraviolet (λ = 355nm) laser pulsed at 10 kHz
 - » Invisible to human eye.
 - » Unable to flash-blind pilots; Class 1 laser (incapable of producing damaging radiation levels during operation and exempt from any control measures).
 - » So no need for "laser spotters" as needed with Na lasers.
 Page 13

Example of laser for Rayleigh guide star: Frequency doubled Nd:YAG lasers

- Nd:YAG means "neodimium-doped yttrium aluminum garnet"
- Nd:YAG lases at 1.06 micron
- Use nonlinear crystal to convert two 1.06 micron photons to one 0.53 micron photon (2 X frequency)
- Example: Coherent's Verdi laser
 - Pump light: from laser diodes
 - Very efficient
 - Available up to 18 Watts

Robo AO Error Budget on UC 88" Telescope

Percentile Seeing				25%		50%				75%	
Atmospheric r0				22.1 cm		16.8		cm		10.3 cm	
Effective seeing at zenith (with dome seeing)				0.69"		0.8		0"		1.00"	
Zenith angle				15 degrees 15 degrees 45 degrees				grees	35 degrees		
Abuserbasis Fitting Free											-
Atmospheric Fitting Error			38		43		51		56		
Bandwidth Error			36		42		49		54		
High-order Measurement Error				24		27		30		34	
LGS Focal Anisopianatism Error				/5		103		124		160	
Multispectral Error				3		3		94		46	
Scinuliauon Error				12		15		2/		27	
WES SCINTILIATION EFFOR				10		10		10		10	
Zero Deint Calibration Errors				30		30		30		30	
Pupil Degistration Errors				34		34		04 21		34	
High Order Aliasing Error			12		21		17		19		
DM Stroke / Digitization Errors				13		14		1		1	
Total High Order Wavefront Error				112 nm		136 nm		185 nm		198 nm	
Tip-Tilt Errors					Angular Error (mas)						
Tilt Measurement Error				11		11		13		14	
Tilt Bandwidth Error				8		11		9		11	
Science Instrument Mechanical Drift				6		6		6		6	
Residual Telescope Pointing Jitter			2		2		2		2		
Residual Centroid Anisoplanatism			1		1		2		2		
Residual Atmospheric Dispersion				1		1		4		3	
Total Tip/Tilt Error (one-axis)				15 mas		16 mas		17 mas		19 mas	
Total Effective Wavefront Error (IRTT)				129 nm		155 nm		195 nm		208 nm	
Total Effective WEE (VISTT)			124 nm		157 nm		195 nm		209 nm		
Total Encourte th	2 (1101	.,	-	124		107		100		200	
Spectral Band	λ	λ/D		Strehl	FWHM	Strehl	FWHM	Strehl	FWHM	Strehl	FWHM
g'	0.47 μ	0.044"		6%	0.06"	2%	0.07"	1%	0.11"	0%	0.49"
r'	0.62 μ	0.058"		18%	0.07"	9%	0.07"	6%	0.08"	1%	0.13"
i'	0.75 µ	0.070"		30%	0.08"	18%	0.08"	14%	0.08"	5%	0.10"
J	1.25 µ	0.117"		64%	0.12"	54%	0.12"	45%	0.13"	33%	0.13"
ц	164	0 153"		76%	0.16"	60%	0.16"	61%	0.16"	51 %	0.16"

General comments on guide star lasers

- Typical average powers of a few watts to 20 watts
 Much more powerful than typical laboratory lasers
- Na guide stars Class IV lasers (a laser safety category)
 - "Significant eye hazards, with potentially devastating and permanent eye damage as a result of direct beam viewing"
 - "Able to cut or burn skin"
 - "May ignite combustible materials"

 As a result, need to have interlocks on cabinets and doors, and avoid airplanes and satellites

Pump light propagates through cladding, pumps doped fiber all along its length

Fiber lasing. Schematic of a double-clad fiber laser in an end-pumped configuration (not to scale).

Credit: Nilsson and Payne, Science Magazine, 2011

Procuring lasers for sodium guide stars

- No known laser medium wants to lase directly at 589nm, the wavelength of the Na D_2 transition
- To make 589nm light, have to make use of <u>nonlinear</u> processes in the lasing medium
 - *Raman scattering:* shifts laser wavelength to a slightly longer one
 - Frequency doubling: two photons at frequency v interact nonlinearly in a nonlinear crystal to produce a photon at frequency 2v
 - Sum frequency mixing: $v_{out} = v_1 + v_2$ in a nonlinear crystal

Current generation of Na lasers: all-fiber laser (Toptica, LLNL and UCSC)

• Example of a fiber laser

Advantages of fiber lasers

Very compact

Commercial parts from telecommunications industry

• Efficient:

- Pump with laser diodes high efficiency
- The doped fiber is in the core
- Pump light goes thru fiber cladding all along its length - excellent surface to volume ratio
- Two types of fiber lasers have been demonstrated at the required power levels at 589 nm (Toptica in Europe, Daren Dillon at UCSC plus Jay Dawson at LLNL)

Toptica laser (concept developed by ESO)

- Start with pump fiber laser at 1120 nm
- <u>Raman shift</u> to longer wavelength --1178 nm
- Then <u>frequency-</u> <u>double</u> to 589 nm

Keck Toptica Laser

Electronics and cooling

CfAO Fiber laser concept developed by Daren Dillon (UCSC) and Jay Dawson (LLNL)

- Two separate fiber amplifiers, sum frequency mixing
- One at 938 nm, one at 1583 nm

Galactic Center with Keck laser guide star AO

Keck laser guide star AO

Best natural guide star AO

Andrea Ghez, UCLA group

Outline of laser guide star topics

- ✓ Why are laser guide stars needed?
- Principles of laser scattering in the atmosphere
- What is the sodium layer? How does it behave?
- Physics of sodium atom excitation
- Lasers used in astronomical laser guide star AO
- Wavefront errors for laser guide star AO
 - Stop here if we are running out of time

Laser guide star AO needs to use a faint tip-tilt star to stabilize laser spot on sky

from A. Tokovinin

Effective isoplanatic angle for image motion: "isokinetic angle"

- Image motion is due to low order modes of turbulence
 - Measurement is integrated over whole telescope aperture, so only modes with the largest wavelengths contribute (others are averaged out)
- Low order modes change more slowly in both time and in angle on the sky
- "Isokinetic angle"
 - Analogue of isoplanatic angle, but for tip-tilt only
 - Typical values in infrared: of order 1 arc min

Tip-tilt mirror and sensor configuration

Sky coverage is determined by distribution of (faint) tip-tilt stars

Sky coverage fraction: probability that your favorite galaxy will have a bright enough TT star nearby

• Keck: >18th mag

----Galactic latitude = 90° ----Galactic latitude = 30°

Assumes: 271 deg of freedom 5 W cw laser

"Cone effect" or "focal anisoplanatism" for laser guide stars

- "Real" star is at infinity, whereas laser is at finite height
- Two contributions:
 - Unsensed turbulence above height of guide star
 - Geometrical effect of unsampled turbulence at edge of pupil

- Characterized by parameter d₀
- Hardy Sect. 7.3.3 (cone effect = focal anisoplanatism)

$$\sigma_{FA}^{2} = (D / d_{0})^{5/3}$$

• Typical sizes of $d_0 \sim a$ few meters to 20 meters

Dependence of d_0 on beacon altitude

-fAr

- One Rayleigh beacon OK for D < 4 m at λ = 1.65 micron
- One Na beacon OK for D < 10 m at λ = 1.65 micron

Effects of laser guide star on overall AO error budget

• The good news:

- Laser is brighter than your average natural guide star
 - » Reduces measurement error
- Can point it right at your target
 - » Reduces anisoplanatism

• The bad news:

- Still have <u>tilt</u> anisoplanatism
- New: focus anisoplanatism
- Laser spot larger than NGS

 $\sigma_{tilt}^{2} = (\theta / \theta_{tilt})^{5/3}$ $\sigma_{FA}^{2} = (D / d_{0})^{5/3}$ $\sigma_{meas}^{2} \sim (6.3 / SNR)^{2}$

Compare NGS and LGS performance

 Schematic, for visible tip-tilt star

Main Points

- Rayleigh beacon lasers are straightforward to purchase, but single beacons are limited to medium sized telescopes due to focal anisoplanatism
 - Can fix if you use multiple lasers
- Sodium layer saturates at high peak laser powers, so try to use long pulses or "CW" (continuous wave) lasers
- For Na guide stars, fiber lasers are the way to go (long pulses, low peak power)
- Added contributions to error budget from LGS's
 Tilt anisoplanatism, cone effect, larger spot